Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetica ; 152(1): 51-61, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381186

RESUMO

Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.


Assuntos
Chamaecrista , Fabaceae , Filogenia , Chamaecrista/genética , Fabaceae/genética , Cromossomos de Plantas/genética , Genoma de Planta , Cariótipo , Poliploidia , DNA Ribossômico/genética
2.
Front Genet ; 12: 727314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630521

RESUMO

Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. "Campo Grande," S. capitata "RS024" and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.

3.
Planta ; 252(4): 49, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918627

RESUMO

MAIN CONCLUSION: Cytogenomic characterization of Erythrostemon hughesii reveals a heterogeneity of repeats in its subtelomeric heterochromatin. Comparative analyses with other Caesalpinia group species reveal a significant reduction in the abundance of Ty3-gypsy/Chromovirus Tekay retrotransposons during its evolution. In numerically stable karyotypes, repetitive DNA variability is one of the main causes of genome and chromosome variation and evolution. Species from the Caesalpinia group (Leguminosae) are karyotypically characterized by 2n = 24, with small chromosomes and highly variable CMA+ heterochromatin banding patterns that correlate with environmental variables. Erythrostemon hughesii differs from other species of the group examined to date for having subtelomeric CMA+ bands; this contrasts with most species in the group which have proximal bands. Here we analyse the repeatome of E. hughesii using genome skimming and chromosomal mapping approaches to characterize the identity of the most abundant repetitive elements and their physical location. The repetitive fraction of E. hughesii comprises 28.73% of the genome. The most abundant elements were retrotransposons (RT) with long terminal repeats (LTR-RT; 9.76%) and satellite DNAs (7.83%). Within the LTR-RTs, the most abundant lineages were: Ty1/copia-Ale (1%), Ty3/gypsy CRM (0.88%) and Ty3/gypsy Athila (0.75%). Using fluorescent in situ hybridization four satellite DNAs and several LTR-RT elements were shown to be present in most subtelomeric CMA+ bands. These results highlight how the repeatome in E. hughesii, a species from Oaxaca state in Mexico, is clearly distinct from Northeast Brazilian species of the Caesalpinia group, mainly due to its high diversity of repeats in its subtelomeric heterochromatic bands and low amount of LTR-RT Ty3/gypsy-Tekay elements. Comparative sequence analysis of Tekay elements from different species is congruent with a clade-specific origin of this LTR-RT after the divergence of the Caesalpinia group. We hypothesize that repeat-rich heterochromatin may play a role in leading to faster genomic divergence between individuals, increasing speciation and diversification.


Assuntos
Caesalpinia , Variação Genética , Genoma de Planta , Heterocromatina , Brasil , Caesalpinia/genética , Evolução Molecular , Genoma de Planta/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , México , Filogenia
4.
Planta ; 250(6): 2173-2186, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696317

RESUMO

MAIN CONCLUSION: We demonstrated by cytogenomic analysis that the proximal heterochromatin of the Northeast Brazilian species of Caesalpinia group is enriched with phylogenetically conserved Ty3/Gypsy-Tekay RT, but diverge in the presence of Ty3/Gypsy-Athila RT and satDNA. The Caesalpinia Group includes 225 species and 27 monophyletic genera of which four occur in Northeastern Brazil: Erythrostemon (1 sp.), Cenostigma (7 spp.), Libidibia (1 sp.), and Paubrasilia (1 sp.). The last three genera are placed in different clades in the Caesalpinia Group phylogeny, and yet they are characterized by having a numerically stable karyotype 2n = 24 (16 M+8A) and GC-rich heterochromatic bands (chromomycin A3 positive/CMA+ bands) in the proximal chromosome regions. To characterize the composition of their heterochromatin and test for the homology of these chromosomal regions, genomic DNA was extracted from Cenostigma microphyllum, Libidibia ferrea, and Paubrasilia echinata, and sequenced at low coverage using the Illumina platform. The genomic repetitive fractions were characterized using a Galaxy/RepeatExplorer-Elixir platform. The most abundant elements of each genome were chromosomally located by fluorescent in situ hybridization (FISH) and compared to the CMA+ heterochromatin distribution. The repetitive fraction of the genomes of C. microphyllum, L. ferrea, and P. echinata were estimated to be 41.70%, 38.44%, and 72.51%, respectively. Ty3/Gypsy retrotransposons (RT), specifically the Tekay lineage, were the most abundant repeats in each of the three genomes. FISH mapping revealed species-specific patterns for the Tekay elements in the proximal regions of the chromosomes, co-localized with CMA+ bands. Other species-specific patterns were observed, e.g., for the Ty3/Gypsy RT Athila elements which were found in all the proximal heterochromatin of L. ferrea or restricted to the acrocentric chromosomes of C. microphyllum. This Athila labeling co-localized with satellite DNAs (satDNAs). Although the Caesalpinia Group diverged around 55 Mya, our results suggest an ancestral colonization of Tekay RT in the proximal heterochromatin. Thus, the present-day composition of the pericentromeric heterochromatin in these Northeast Brazilian species is a combination of the maintenance of an ancestral Tekay distribution with a species-specific accumulation of other repeats.


Assuntos
Evolução Biológica , Caesalpinia/genética , Centrômero/genética , Genoma de Planta , Heterocromatina/genética , Especificidade da Espécie , Brasil , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...